Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 44(8): 729-737, Aug. 2011. ilus
Article in English | LILACS | ID: lil-595712

ABSTRACT

Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances), liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.


Subject(s)
Humans , Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Administration, Topical , Injections, Intravenous , Liposomes
2.
Braz. j. med. biol. res ; 37(10): 1491-1496, Oct. 2004. tab
Article in English | LILACS | ID: lil-383028

ABSTRACT

The aim of the present study was to investigate the effects of daily intragastric administration of bullfrog oil (oleic, linoleic and palmitoleic acid-rich oil), corresponding to 0.4 percent of body weight for four weeks, on fatty acid composition and oxidative stress (lipid peroxidation and catalase activity) in mouse liver. The activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and gamma-glutamyltransferase (GGT), biomarkers of tissue injury, were determined in liver homogenates and serum. The proportions of 18:2n-6, 20:4n-6, 20:5n-3, and 22:6n-3 (polyunsaturated fatty acids, from 37 to 60 percent) in the total fatty acid content were increased in the liver of the bullfrog oil-treated group (P < 0.05) compared to control. At the same time, a significant decrease in the relative abundance of 14:0, 16:0, and 18:0 (saturated fatty acids, from 49 to 25 percent) was observed. The hepatic content of thiobarbituric acid reactive substances (TBARS) was increased from 2.3 ± 0.2 to 12.3 ± 0.3 nmol TBA-MDA/mg protein and catalase activity was increased from 840 ± 32 to 1110 ± 45 æmol reduced H2O2 min-1 mg protein-1 in the treated group. Bullfrog oil administration increased AST and ALP activities in the liver (from 234.10 ± 0.12 to 342.84 ± 0.13 and 9.38 ± 0.60 to 20.06 ± 0.27 U/g, respectively) and in serum (from 95.41 ± 6.13 to 120.32 ± 3.15 and 234.75 ± 11.5 to 254.41 ± 2.73 U/l, respectively), suggesting that this treatment induced tissue damage. ALT activity was increased from 287.28 ± 0.29 to 315.98 ± 0.34 U/g in the liver but remained unchanged in serum, whereas the GGT activity was not affected by bullfrog oil treatment. Therefore, despite the interesting modulation of fatty acids by bullfrog oil, a possible therapeutic use requires care since some adverse effects were observed in liver.


Subject(s)
Animals , Male , Mice , Catalase , Dietary Fats, Unsaturated , Fatty Acids , Lipid Peroxidation , Liver , Oxidative Stress , Alkaline Phosphatase , Biomarkers , gamma-Glutamyltransferase , Rana catesbeiana , Thiobarbituric Acid Reactive Substances , Transaminases
3.
Braz. j. med. biol. res ; 34(5): 683-687, May 2001. tab
Article in English | LILACS | ID: lil-285867

ABSTRACT

Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180 percent). Removal of the gonads in both males and females (comparison between castrated groups) increased the difference in SOD activity from 83 to 138 percent and reduced the difference in CAT activity from 180 to 86 percent. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48 percent) CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle


Subject(s)
Animals , Female , Rats , Antioxidants/metabolism , Gonadal Steroid Hormones/pharmacology , Lipid Peroxidation/drug effects , Macrophages, Peritoneal/drug effects , Oxidoreductases/metabolism , Castration , Catalase/metabolism , Estrogens/pharmacology , Glutathione Peroxidase/metabolism , Macrophages, Peritoneal/enzymology , Oxidative Stress/drug effects , Rats, Wistar , Sex Characteristics , Superoxide Dismutase/metabolism , Testosterone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL